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SPECS specs-fp7.eu produced quasi-operational and actionable local climate
information with a new generation of reliable European climate forecast
systems.
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Resolution brings leap forward in skill (@ &= "~
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Correlation of the ensemble mean precipitation from DePreSys3
(N216-ORCAO025).
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Increased resolution improves skKill

Forecast quality from EC-Earth3.1 seasonal hindcasts
(1993-2009, Glorys2v1, ERAInt and ERALand initial conditions).
Solid for ESA-CCI and dashed for ERSST.
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Bias from EC-Earth3.1 seasonal hindcasts (1993-20009,
Glorys2v1, ERAInt and ERALand initial conditions).

Increased resolution modifies biases
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Improving initialisation @"m ¢
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JJA near-surface temperature anomalies in 2010 from ERAInt (left) and
odds ratio from experiments with a climatological (centre) and a
realistic (right) land-surface initialisation. Results for EC-Earth2.3
started in May with initial conditions from ERAInt, ORAS4 and a sea-ice
reconstruction over 1979-2010.
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Sensitivity experiments at HR © = O
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Correlation of JJA near-surface temperature from EC-Earth3.1
hindcasts started in May over 1993-2009 with climatological (left) and
ERA-Land (centre) land-surface initial conditions, and their difference
(right).

Hard to detect differences in sensitivity experiments: use of the
Steiger test for correlation differences (increased power).
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Observational uncertainty @="

Nino3.4 SST correlation of the ensemble mean for ECMWEF
System 4 started every May over 1993-2010.
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MPI message packing Convergence check reduction
Taking in account that NEMO is really sensitive to Some routines use collective communications to perform a
latency, messages aggregation is the best way to reduce convergence check in iterative solvers. The cost of this
the time invested in communications. Therefore, verifications is really high, reaching a 66% of the time. Wherever
consecutive messages have been packed wherever the the model allowed it, we reduced the frequency of this
computational dependencies allow to do so. verifications in order to increase parallel efficiency.
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Reordering

In order to apply the message packing optimization to as
many routines as possible, it was necessary to rearrange
some computation and communication regions, taking
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into account the dependencies between them, to reduce 'l':g:‘

the number of messages. This way it was possible to

compute (and communicate) up to 41 variables at the

same time, resulting in a dramatic reduction of the B computat
omputation

granularity.
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Computational efficiency @ ¢

Speed up of the NEMO3.6 (ORCA025L75) code when switching
some parts of the code from double to single precision.
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Aims to develop advanced and well-evaluated high-resolution global
climate models, capable of simulating and predicting regional climate
with unprecedented fidelity (contribution to HiResMIP).

Institution MO KNMIBSC | CERFACS MPI AW CMCC ECMWF
NCAS SMHI CNR
Model names | MetUM ECEarth Arpege ECHAM ECHAM CCESM IFS
NEMO NEMO NEMO MPIOM FESOM NEMO NEMO
Atmosph. 60-25km | T255-799 | T127-359 T63-255 T63-255 100-25km | T319-799
Res., core
Atmosph. 10-5km T1279-2047
Res., FCM
Oceanic Ya© Yo Ya 0.4-Yi° 1-Ya Ya Ya
Res., core spatially
variable
Oceanic 1120 11120 11120 1100 1-1/140 (1/16°)
Res., FCM spatialty 1 |
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Summary and some thoughts

Progress: increased resolution improves both mean climate and
skill for some areas and variables; further improvements require
substantial experimentation for the model to be diagnosed at the
same level as with the standard resolution configuration.

Challenges: reference uncertainty, observations at equivalent
resolutions, process understanding, leveraging knowledge from
other communities (climate modelling and weather forecasting),
etc.

Technology: make the most of a context with rapidly evolving
technology (heterogeneous nodes, software, mobile data capture,
visualisation, storage/compression, computing and storage
outsourcing) to reduce the model cost and increase the capability
to experiment with expensive configurations.

Services: who benefits from these expensive efforts?
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